Optimisation of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive
نویسندگان
چکیده
This study deals with the optimisation of hybrid composite drive shafts operating at subcritical or supercritical speeds, using a genetic algorithm. A formulation for the flexural vibrations of a composite drive shaft mounted on viscoelastic supports including shear effects is developed. In particular, an analytic stability criterion is developed to ensure the integrity of the system in the supercritical regime. Then it is shown that the torsional strength can be computed with the maximum stress criterion. A shell method is developed for computing drive shaft torsional buckling. The optimisation of a helicopter tail rotor driveline is then performed. In particular, original hybrid shafts consisting of high-modulus and high-strength carbon fibre reinforced epoxy plies were studied. The solutions obtained using the method presented here made it possible to greatly decrease the number of shafts and the weight of the driveline under subcritical conditions, and even more under supercritical conditions. This study yielded some general rules for designing an optimum composite shaft without any need for optimisation algorithms.
منابع مشابه
Multi-objective Optimization of Hybrid Carbon/Glass Fiber Reinforced Epoxy Composite Automotive Drive Shaft
In design and fabricate drive shafts with high value of fundamental natural frequency that represented high value of critical speed; using composite materials instead of typical metallic materials could provide longer length shafts with lighter weight. In this paper, multi-objective optimization (MOP) of a composite drive shaft is performed considering three conflicting objectives: fundamental ...
متن کاملInfluence of Temperature and Moisture on the Compressive Strength of Carbon Fiber Reinforced Polymers
The effect of moisture absorption and high temperature on the compressive strength of unidirectional IM7/977-2 carbon/epoxy resins have been investigated experimentally. The specimens were divided into 4 groups, and tested under 4 different conditions by varying the testing temperature and moisture parameters. The fiber orientation selected were 0o, ±45o and 90o...
متن کاملMechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers
Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...
متن کاملHybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin
Fiber reinforced concrete (FRC) has been widely used due to its advantages over plain concrete such as high energy absorption, post cracking behaviour, flexural and impact strength and arresting shrinkage cracks. But there is a weak zone between fibers and paste in fiber reinforced concretes and this weak zone is full of porosity, especially in hybrid fiber reinforced concretes. So it is necess...
متن کاملEffects of Fibers and Fillers on Mechanical Properties of Thermoplastic Composites
Thermoplastic copolyester elastomer (TCE) and Polyoxymethylene (POM) filled polytetrafluroethylene (PTFE) composite, reinforced with short glass fiber (SGF) and different shape microfillers such as short carbon fiber (SCF), silicon carbide (SiC) and alumina (Al2O3) were prepared by melt mixing method using twin screw extruder followed by injection moulding. Mechanical properties such as tensile...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1110.1628 شماره
صفحات -
تاریخ انتشار 2011